# AKROLOY<sup>®</sup> PA – New opportunities for design in plastics



**AKRO-PLASTIC GmbH** Member of the Feddersen Group

## **AKROLOY® PA Series** (PA 6.6 + PA 6I/6T reinforced)

#### AKROLOY® PA – the alternative for innovative products made from engineering plastics

The subject of metal substitution, based on the demand for cost and weight reductions, has been discussed for many years in many sectors of the industry. In the last 10 years special synthetic materials have begun to emerge as a feasible solution as a substitute for metal die-casting, even stamped and bent parts, particularly in the automotive industry, but also in sanitary installations and general machine building.

In order to fulfill those requirements AKRO PLASTIC GmbH has developed the new innovative product AKROLOY PA® – a special blend – based on PA 6.6.

The table at right and the information on the following pages demonstrate the technical data and possibilities for many innovative applications that in the future may be implemented in designs using engineering plastics instead of metal.

<sup>1</sup> = mould temperature: 100 °C melt temperature: 320 °C injection pressure: 750 bar cross section of flow spiral: 7 mm x 3.5 mm

+ = passed

"cond." test values = conditioned, measured on test specimens stored according to ISO 1110

"d.a.m." = dry as moulded test values = residual moisture content < 0.10 %

| Typical values for<br>black colored products at 23 °C | Test<br>Specification    | Test<br>Method | Unit     | PA GF 30<br>(2718) |        | PA GF 40<br>(2845) |        | PA GF 50<br>(2706) |        | PA GF 60<br>(2844) |        |
|-------------------------------------------------------|--------------------------|----------------|----------|--------------------|--------|--------------------|--------|--------------------|--------|--------------------|--------|
| Mechanical Properties                                 |                          |                |          | d.a.m.             | cond.  | d.a.m.             | cond.  | d.a.m.             | cond.  | d.a.m.             | cond.  |
| Tensile modulus                                       | 1 mm/min                 | ISO 527-1/2    | MPa      | 10,500             | 10,000 | 13,000             | 12,000 | 17,500             | 16,500 | 21,000             | 20,000 |
| Tensile stress at break                               | 5 mm/min                 | ISO 527-1/2    | MPa      | 210                | 180    | 230                | 200    | 250                | 220    | 275                | 245    |
| Elongation at break                                   | 5 mm/min                 | ISO 527-1/2    | %        | 3                  | 3      | 3                  | 3      | 3                  | 3      | 2.5                | 2.5    |
| Flexural modulus                                      | 2 mm/min                 | ISO 178        | MPa      | 9,300              |        | 12,000             |        | 16,400             |        | 20,000             |        |
| Flexural strength                                     | 2 mm/min                 | ISO 178        | MPa      | 265                |        | 325                |        | 380                |        | 405                |        |
| Charpy impact strength                                | 23 °C                    | ISO 179-1/1eU  | kJ/m²    | 80                 | 80     | 95                 | 90     | 105                | 100    | 100                | 95     |
| Charpy impact strength                                | -30 °C                   | ISO 179-1/1eU  | kJ/m²    | 65                 |        | 80                 |        | 95                 |        | 90                 |        |
| Charpy notched impact strength                        | 23 °C                    | ISO 179-1/1eA  | kJ/m²    | 11                 | 10     | 14                 | 14     | 17                 | 17     | 16                 | 16     |
| Charpy notched impact strength                        | -30 °C                   | ISO 179-1/1eA  | kJ/m²    | 10                 |        | 13                 |        | 15                 |        | 14                 |        |
| Ball indentation hardness                             | HB 961/30                | ISO 2039-1     | MPa      | 240                |        | 265                |        | 290                |        | 330                |        |
| Electrical Properties                                 | ·                        |                |          |                    |        |                    |        |                    |        |                    |        |
| Volume resistivity                                    |                          | IEC 60093      | Ohm x m  |                    |        |                    |        | 9.1 E13            |        |                    |        |
| Comparative tracking index,<br>CTI                    | Test solution A          | IEC 60112      |          | 600                |        | 600                |        | 600                |        | 600                |        |
| Permittivity                                          | 1 MHz                    | IEC 60250      |          |                    |        |                    |        | 4.42               |        |                    |        |
| Thermal Properties                                    |                          |                | d.a.m.   |                    | d.a.m. |                    | d.a.m. |                    | d.a.m. |                    |        |
| Melting point                                         | DSC, 10 K/min            | ISO 11357-1    | °C       | 255                |        | 255                |        | 255                |        | 255                |        |
| Heat distortion temperature, HDT/A                    | 1.8 MPa                  | ISO 75-1/2     | °C       | 215                |        | 220                |        | 225                |        | 225                |        |
| Heat distortion temperature, HDT/B                    | 0.45 MPa                 | ISO 75-1/2     | °C       | 245                |        | 245                |        | 245                |        | 245                |        |
| CLTE, flow                                            | 23 °C – 80 °C            | ISO 11359-1/2  | 1.0E-4/K | 0.20               |        | 0.15               |        | 0.15               |        | 0.15               |        |
| CLTE, transverse                                      | 23 °C – 80 °C            | ISO 11359-1/2  | 1.0E-4/K | 0.75               |        | 0.70               |        | 0.65               |        | 0.55               |        |
| Temp.index for 50 % loss of tens.strength             | 5,000 h                  | IEC 216        | °C       | 140 - 150          |        | 140 - 150          |        | 140 - 150          |        | 140 - 150          |        |
| Temp.index for 50 % loss of tens.strength             | 20,000 h                 | IEC 216        | °C       | 110 - 130          |        | 110 - 130          |        | 110 - 130          |        | 110 - 130          |        |
| Flammability                                          |                          |                |          |                    |        |                    |        |                    |        |                    |        |
| Flammability acc.UL 94                                | 0.8 mm                   | UL 94          | Class    | НВ                 |        | НВ                 |        | НВ                 |        | НВ                 |        |
| Rate acc. FMVSS 302<br>(<100 mm/min)                  | > 1 mm thickness         | FMVSS 302      |          | +                  |        | +                  |        | +                  |        | +                  |        |
| General Properties                                    |                          | ·              |          |                    |        |                    |        |                    |        |                    |        |
| Density                                               | 23 °C                    | ISO 1183       | g/cm³    | 1.38               |        | 1.48               |        | 1.59               |        | 1.72               |        |
| Reinforcement content                                 |                          | ISO 1172       | %        | 30                 |        | 40                 |        | 50                 |        | 60                 |        |
| Moisture absorption                                   | 70 °C/62 r.h.            | ISO 1110       | %        | 1.55               |        | 1.30               |        | 1.05               |        | 0.80               |        |
| Water absorption                                      | 23 °C/satur.             | ISO 62         | %        | 4.5 - 5            |        | 4 - 4.5            |        | 3.5 – 4            |        | 3 - 3.5            |        |
| Processing                                            |                          |                |          |                    |        |                    |        |                    |        |                    |        |
| Flowability                                           | Flow spiral <sup>1</sup> | AKRO           | mm       | 760                |        | 660                |        | 540                |        | 470                |        |
| Processing shrinkage, flow                            |                          | ISO 294-4      | %        | < 0.1              |        | < 0.1              |        | < 0.3              |        | < 0.3              |        |
| Processing shrinkage, transverse                      |                          | ISO 294-4      | %        | 0                  | .6     | 0                  | .6     | 0                  | .5     | 0                  | .5     |

### **Product Characterisation**



One of the most characteristic properties of polyamide (PA 6.6) is the absorption of moisture. This essentially leads to increased toughness and elongation at break, to name the most important parameters. On the other side, there are important diminished design properties, such as rigidity, strength and creep modulus. It is also clear that the water molecules diffused into the polymer require a certain space, so that the dimensional stability suffers, as well.

Applications that up to now have been manufactured of die cast metals, usually involve extremely high demands on synthetic materials, running contrary to the above mentioned disadvantages. Even high levels of reinforcement in standard polyamides on the basis of PA 6 or PA 6.6 with, for example, 50 % or 60 % glass fibres, still exhibit drastic changes in mechanical characteristics.





### Creep behaviour depending on load 3.5 90 MPa @ 23 °C 3.0 60 MPa @ 60 °C 2.5 2.0 [%] Strain max. recommended elongation after 10,000 h 1.5 1.0 0.5 0 10 0.1 1

By blending of PA 6.6 with a partially aromatic CoPA (PA 6I/6T), it is possible to significantly reduce the influence of moisture on the product characteristics. While the drop in rigidity and strength of PA 6.6 GF 50 in a standard climate is still at approx. 25 %, a partially aromatic blend nevertheless exhibits a drop of less than 10 %. Furthermore, it becomes apparent that the toughness remains virtually unaffected. As a result of these findings, the swelling behaviour is improved, as well, which is favourable for dimensional stability. At the same time, this material mix also increases the glass transition temperature range. All in all, partly aromatic PA 6.6-Blends offer exactly the characteristics that are demanded by designers and users.

The measuring values shown in all diagrams apply to the material AKROLOY® PA GF 50 black (2706)

### Stress-strain diagram





### **Processing Recommendations**



AKROLOY<sup>®</sup> PA can be processed on any commercially available injection moulding machine with standard screws according to the recommendations of the machine manufacturer. Please refer to the sketch and table beside for our recommended machine, mould and dryer settings.

AKROLOY® PA is based on a semicrystalline PA 6.6 and an amorphous CoPA. This essentially determines the processing conditions. Accordingly, the melting point of AKROLOY<sup>®</sup> PA is at approx. 255 °C and is not influenced by the CoPA. With increasing temperatures, the amorphous contents provide a disproportionately low viscosity. The result is a very good reproduction of mould surfaces and a mass temperature that is up to 30 °C lower than required by comparable products. This results, aside from high quality surface finishes, frequently in reductions of cycle times, as well. Owing to production conditions, this must be verified in each individual case. Overall, AKROLOY® PA represents a step towards energy savings, in particular, when energy costs are compared to those in metal production and processing.

|                         |                   | AKROLOY <sup>®</sup> PA |  |  |  |  |
|-------------------------|-------------------|-------------------------|--|--|--|--|
| Flange                  | $\vartheta_1$     | 40 – 80 °C              |  |  |  |  |
| Sector 1 – Sector 4     | ϑ <sub>2</sub>    | 270 – 310 °C            |  |  |  |  |
| Nozzle                  | მ₃                | 290 - 310 °C            |  |  |  |  |
| Melt temperature        | $\vartheta_4$     | 290 - 320 °C            |  |  |  |  |
| Mould temperature       | ჭ₅                | 80 - 130 °C             |  |  |  |  |
| Drying                  | <b>ئ</b> 6        | 80 °C, 2 – 4 h          |  |  |  |  |
| Holding pressure, spec. | $P_{hold}$        | 300 – 800 bar           |  |  |  |  |
| Back pressure, spec.    | $P_{\text{back}}$ | 50 – 150 bar            |  |  |  |  |
| Injection speed         |                   | middle – high           |  |  |  |  |

The specified values are for reference values. For increasing filling contents the higher values should be used For drying, we recommend using only dry air or a vacuum dryer. Processing moisture levels between 0.05 and 0.1 %are recommended. It is recor ded to use opened bags completely.Material processed from silo or boxes requires a minimum drving time of 4 h.



# **Applications**

Due to increasing cost pressure in many industrial sectors, AKROLOY® PA will become a very interesting alternative material in the area of substitutes for metal die casting. Aside from already mentioned advantages in the service life of the mould, the omission of post processing allows an average cost reduction of up to 50 % – and more. The following list comprises imaginable and suitable areas of application, grouped by segments. Naturally, there is a multitude of further feasible applications, which we would be glad to discuss with you.



Draft for the automotive industry:

Construction

Household

bottle openers

nutcrackers

handles

window locks

expanding nails

#### Automotive Industry

- ignition key switch housing
- door handle components
- door lock components
- instrument panels (centre console)
- arm rests
- electric motor housings
- carriers for wood decor strips
- seat sliding mechanisms

#### Sanitary Installation

- single lever taps
- water filter housings
- housing for bath tap
- chrome-plated shower heads, levels

Disclaimer: All specifications and information given in this brochure are based on our current knowledge and experience. A legally binding promise of certain characteristics or suitability for a concrete individual case cannot be derived from this information. The information supplied here is not intended to release processors and users from the responsibility of carrying out their own

CAD-Model "Control Arm" made in AKROLOY® PA GF 60

door lock components

- for insulating plugs
- corner connectors
- for lighting systems
- shelving support elements

#### **Electronic Industry**

- mobile phone housings
- plastic tongs
- housings for measuring units
- carrier plates

#### **Machine Building**

- plastic screws
- calipers
- screw clamps

 coffee maker components • juice extractor components knives and handles

# We will be pleased to meet you!

**AKRO-PLASTIC GmbH** Member of the Feddersen Group

Industriegebiet Brohltal Ost Im Stiefelfeld 1 56651 Niederzissen Germany Phone: +49(0)2636-9742-0 Fax: +49(0)2636-9742-31 info@akro-plastic.com www.akro-plastic.com

Here you can find the latest version of our brochure:



For more locations, visit www.akro-plastic.com